A pandemic couldn't stop our research into flexible solar panels, but it did create new challenges and innovation.

Victoria’s 2020 ‘second-wave’ COVID-19 lockdown meant our top researchers could not use their labs.

Determined to make flexible solar panels a reality, the team overcame adversity with stunning innovation to advance the field – all from the comfort of home.

A light bulb moment for flexible solar panels

Dr Doojin Vak with safety glasses onlooking at the machine that prints flexible solar panels.

Dr Doojin Vak printing flexible solar panels.

For Dr Doojin Vak, time away from the lab led to an epiphany that could transform the solar industry.

Doojin and the Printed Photovoltaics Team use industrial printers to make super thin and flexible solar panels that can be applied to pretty much anything, including awnings, tents and backpacks.

While the team has been working hard to improve the energy efficiency of their flexible solar panels to rival traditional silicon cells, Doojin used his time during lockdown to prevent COVID-19 impacting on the progress of his research.

Close-up image of the research machine

Doojin’s new automated research system.

While the researchers are away, the robots slay

Prior to the lockdown brainwave, creating research samples of flexible solar cells was a time-consuming process.

Our experienced researchers could only make and test up to 20 solar cells in a day and needed to be there every step of the way.

To facilitate work from home, Doojin designed and built a research robot that can be controlled remotely or autonomously so his work could continue in the lab.

Doojin’s new automated research system was able to fabricate and test a whopping 12,000 cells in a 24-hour period, without a researcher in sight. No biggie – that’s just 600 times more than the team’s usual output.

This means the team has already achieved new-record energy efficiency for the technology. They’re now keen to partner with Australian businesses to kickstart flexible solar manufacturing in Australia.

Cassette tapes make a comeback

Introducing the concept of a cassette tape into the research process made this advance possible. Basically, one robot ‘records’ different solar cells at each position in a roll of tape. Then, the other robot ‘plays’ the tape exactly like a cassette player.

So, while some of us remember playing and recording music with a dual cassette deck in the 80s, predictably, Doojin’s process looks much more modern.

Fabricating so many cells created a new challenge for the team: how do they process the volume of data produced? By using artificial intelligence, or more specifically machine learning, of course.

In another ‘first’, Doojin is working with colleagues at Ulsan National Institute of Science and Technology (UNIST) in South Korea to use machine learning to analyse and predict manufacturing parameters of printed solar cells.

And they’ve demonstrated record breaking efficiency for organic solar cells.

The combination of autonomous testing and machine learning is further accelerating the development of the technology. Amazingly, Doojin did all of this working from home during the pandemic.

A new day dawns for flexible solar panels

A tent pitched in a remote grassy area with flexible solar panels

Imagine using a tent embedded with solar film that could charge lights and devices while you’re out hiking! Credit: Rowan Muller.

Our printable, flexible solar panels are ready to shine. They’re thin, lightweight, and approaching the same energy efficiency as their bulky rooftop counterparts.

We use organic or perovskite solar cells, which are made from a mix of organic and inorganic materials rather than traditional silicon solar cells. We employ our highly-specialised ink to print the solar cells onto rolls of polymer film. This process is significantly cheaper than producing solid silicon panels.

The team ensures developments can be rapidly translated to commercial production processes by focusing on printing techniques that are relevant to industry. This in turn will allow for the product to reach the marketplace faster.

Flexible solar will change the way we create and consume energy. It’s now time for Australian industry to leverage our scientific excellence and drive the use of flexible solar globally. Find out more about our licensing and investment opportunities.

We’re supporting work led by the Department of Industry, Science, Energy and Resources (DISER) to implement the Modern Manufacturing Strategy.

Recycling and clean energy is one of the six priority areas in this whole-of-government strategy. The aim is to help Australian manufacturing scale-up and become more competitive and resilient. This in turn will create jobs now and for future generations.


  1. I think this is truely awesome. But what sort of longevity can be expected from these? Being so thin it would seem like the material would break down dramatically from UV exposure through the day

    1. Hi Lance, thanks for your comment. We think it’s awesome too! While we are yet to demonstrate the same lifetime as conventional Si solar cells, we have measured the performance of cells in the field for up to six years without a decrease in performance (and the cells are still going strong!) We do have to be mindful of the effect of UV exposure, but with the careful selection of robust materials we can minimise the effects of UV exposure and general weathering.

      Team CSIRO

  2. In this modern age, we know how important is the solar panel. Solar panels playing a big role to complete daily electricity needs at a low cost. Now solar panels use industrially. Many big companies use solar panels to complete their 50% of electricity needs

  3. G’day Loretta,

    Certainly, the flexibility of the films allows them to be wound into rolls, which opens up the possibility of them being incorporated into retractable awnings and blinds. This is an area of active interest for us, and we are looking to partner with domestic manufacturers to further explore this opportunity.

    Hopefully in the future you can use our technology to capture the full benefits of the sunlight on your property.



  4. Could this be used for outdoor window awnings/blinds? With neighbouring trees we don’t get sun on our roof for 6 months of the year.

What do you think?

We love hearing from you, but we have a few guidelines.