
Our new facility is ready for face mask testing to ensure Aussie-made masks are up to standard.
The humble face mask has become an iconic tool in the global response to the COVID-19 pandemic. Around the world, this critical piece of personal protection equipment (PPE) is helping in the fight against the virus.
Although they may look like a simple apparatus, face masks require significant engineering. This level of engineering is essential to ensure safe, effective and fit-for-purpose use.
So, when it comes to face masks, how do we know they are actually doing what they say they are?
Behind the mask: types of PPE masks
There are many types of masks, here’s a quick breakdown:
- Surgical masks are generally flat rectangular materials with pleats that stretch across the nose and lower portion of a person’s face and are single-use.
- P2 masks are cup-shaped masks worn around the nose and mouth. They are sometimes referred to as N95 (US standard) or KN95 (Chinese standard) masks. (Fun fact: ‘95’ means the respirator blocks 95 per cent of very small (0.3 micron) test particles)
- P2 surgical masks have a similar shape to P2 masks and must satisfy the requirements of both surgical masks and P2 masks.
Most masks available to the public do not undergo standard testing. But a mask used as a medical device requires testing and registration in the ARTG.
Face mask testing: then and now
PPE for medical staff must be tested and then registered in the Australian Register for Therapeutic Goods (ARTG). Previously, the only way of testing face masks or face mask materials was to send them overseas. This process was time-consuming and expensive.
But, in the same way that COVID-19 has driven innovation in other industries, it’s also driven a significant improvement in the way we ensure the safety of PPE in Australia.
Australia’s first face mask testing facility
We have opened Australia’s first accredited face mask testing facility for single-use surgical face masks. The facility will assist manufacturers in fast-tracking the supply of masks for hospital staff.
Located in Clayton, Victoria, the facility has accreditation from the National Association of Testing Authorities (NATA). It will allow local manufacturers to quickly and effectively test surgical face masks.
Putting masks to the test
We have developed three key tests for single-use surgical face masks. Basically we’re testing to ensure they meet the standards for breathability, blood penetration and bacterial filtration.
Pressure Differential (Pressure drop test)
The Differential Pressure test measures the differential pressure of air on either side of the test material. This test determines whether the wearer will be able to breathe comfortably while wearing it.

Breathability testing by measuring the differential pressure across a mask.
Synthetic Blood Penetration
The Synthetic Blood Penetration Test determines how well a mask can act as a barrier against blood-borne pathogens. We spray a volume of synthetic blood at the centre of the mask at high velocity. This measures the mask’s ability to stop blood getting through the mask.

Testing masks for resistance to synthetic blood penetration.
Bacterial Filtration Efficiency (BFE)
We conduct BFE testing on face masks made to provide protection against biological aerosols. This test determines whether biological organisms can penetrate the filtration fabric used in a mask.

Testing the performance of masks by measuring their ability to filter a microbiological aerosol.
Additional screening, or “proxy tests”
In addition to the accredited tests conducted at our new testing facility in Clayton, we also conduct “proxy” screening tests at our Geelong and Clayton laboratories. These indicative tests are specifically for research and development purposes. In short, we’re helping Aussie manufacturers to improve their products and processes.
Particle Filtration Efficiency
The particle removal test involves passing an air stream containing extremely fine particles, called aerosol, through the mask material. The test determines the material’s ability to act as a particle barrier while letting clean air pass through. Some tests use a very fine liquid spray instead of solid particles.
Dust Loading
This test determines the product’s capacity to collect particles before the creation of a particle blockage that impacts breathing resistance. This test can also measure the amount of electrostatic charge within inside the filter material.
Pore Size Measurement
Another method to identify filterable particle sizes is to measure the pore size distribution in a material. We do this by wetting a porous material with a suitable liquid to fill all the pore spaces and then measuring the pressure necessary to expel this liquid. This measurement can help manufacturers fine-tune their materials for filtration of particles.
The future of face masks
Our Clayton testing facility is now fully operational and currently testing masks and mask materials. Visit our website for more information on the facility and booking our testing service.
26th August 2020 at 11:44 am
We used a pneumatic mask fitting/testing machine in ED FMC – which led to a policy of no beards for ED due to air by pass. I am not sure if there is an updated one being rtd 4 yrs now.
26th August 2020 at 11:33 am
The issue is you are quoting $10000 for the battery of tests so double that of overseas facilities. Just for testing.
AND you are not offering ASTM testing F2100 including flammability and PFE. I mean we are in a pandemic and the important measure right now is testing against submicron particles at 0.1 micron. USA tests for this and you’re not? It shows the flaws in the Australian standard and really you should be offering PFE so we can make sure the masks are filtering viral particles.
26th August 2020 at 4:05 pm
Hi Paul, thank you for your enquiry. We appreciate your request for a PFE testing service. In terms of what is offered, we are accredited to undertake the three performance tests of single-use surgical masks as specified by the applicable Australian Standard, for the purposes of registration of this category of medical device on the ARTG. While these tests may also be applied to hybrid P2/surgical masks, they are not intended to provide evidence of conformity to the respirator Standard (AS/NZS 1716). The services are offered by us recognising the costs associated with operating an accredited laboratory within Australia’s National Science Agency.
Our scientists have been working tirelessly in order to provide this facility to benefit surgical mask manufacturers and distributors who otherwise are required to send products overseas for testing at international accredited laboratories.
If you would like to access our services please contact facemasktesting@csiro.au.
Thanks,
Team CSIRO
25th August 2020 at 9:10 am
HI, How can we send our samples for testing
9th August 2020 at 11:39 am
Hi Keep up the good work CSIRO is appreciated.
Just wondering if you will extend the testing to the efficacy of washable cloth masks for community?
Cheers
Rose
7th August 2020 at 4:52 pm
I was amazed to read that Australia has just established it’s own face mask testing facility. I was ignorant of our ignorance. If asked by a friend if we had such a facility and had always had one, I would have said yes of course. It is an indication of Federal Government laziness and lack of attention to detail. We placed our trust in the efficacy of surgical masks in other countries attention to detail knowing full well that the mask makers are in the business for profit and in this pursuit have historically been known to “cut corners”.